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The challenge of a network topology design is to pro-
vide a configuration with minimum cost given speci-

fied constraints. Network topology design is NP-hard
[1] and known algorithms to solve these problems run
in time that mcreases exponentially with the number

of choices. The economic importance of determining

he placement of switches in an ATM network justifies
heu“‘stzc methods to find a good configuration within a
reasonable amount of time. In this paper, two types of
heuristic algorithms are compared. The first algorithm

1s based on swapping used switch locations with unused
switch locations. The second algorithm is a genetic al-
gorithm.

1 INTRODUCTION !

The challenge of network design is to provide a good
configuration that is cost effective and provides high
performance for information services [2]. The opti-
mization of a network belongs to a class of problems
P-hard, so that no Known algorltnms run in

number of choices [1].
are not linear because the capamtles of the hnks and
switches must be selected from a finite discrete set.
Such hard combinatorial problems are usually solved
using heuristics [3].

1The tests described and the resulting data presented he:

vvvvvvvv described and the resulting data presented herein,
unless otherwise noted, were obtained from research conducted
under the Laboratory Discretionary Research and Development
Program of the United States Arimny Corps of Engineers by the
Waterways Experiment Station. Permission was granted by the

Chief of Engineers to publish this information.

of the links and sw1tches and to determme the routes
of the traffic flows of information that minimize the
cost of the network under given constraints. Often the
constraint is formulated as maximum average delay
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hlbltS several loca.l minima, exact so-
lutions can only be calculated for unrealistically small
networks or unrealistically large run times. Heuristics
are required to approximate the global solution for any
Dut the smallest networks [4]. These heurlstxcs are ini-

uting algorithms, constraint inequalities, and
cost functions, but the heuristic itself is characterized

by the set of trial networks that are to be considered
given the current topology and how the trial network is
selected. A trial topology might be generated by iden-
tifying under-utilized links for elimination or capacity
reduction. Or the capacities of over-utilized links could

be increased to meet the delay constraints in some trial
topology [3]. The greedy-drop heuristic successively
deletes the least utilized node to find the minimum
number of nodes that will support the traffic [5].

A node or branch can be exchanged to modify the

between two different nodes [6]. The cut-saturation
method identifies candidate branches by finding the



modifv the tonoloe: f the network A node exchange
deletes a node and adds a node. These methods can
be repeated with a new starting topology or a different
order of the same exchanges to look for a trial network
with lower cost [7].
Several heuristic algorithms have been reported for
e31gmng asynchronous transfer
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ath ro nting for traffic in the same class Numerous lo-
cal minima occur when optimizing capacities and flows
of virtual paths (VP) in an ATM network. Gerla, Mon-
teiro, and Pazos [9] formulate the capacity and flow
assignment problem for the VP topology problem and
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the 1mvesf average delay is chosen.
optlmization of an ATM network at the call-level as
a multirate, circuit- switched, loss network with equiv-
alent capacity requirements. They calculate the loss
probabilities using the fixed-point approach assuming
link independence. This approach terminates at a io-
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repeating the procedure for several random initializa-

evaluating a given topol and generatmg g;ood mitial
topologies [4]. One way to construct a feasible topology
is to assign the maximum allowable capacity to each
link and node [8]. Kershenbaum, Kermani, and Grover
present a heuristic for generating low-cost trees that

L e s reremed e o el el Lo . r 1 L -
they suggest as a starting topology [11]. Dirilten and
Donaldson generate feas;ble low-cost trees using linear

network desmn heuristlc [12]. A clustenng alg;orlthm
called NEWCUST determines candidate concentrator
locations by creating a list of K nearest neighbors for
each node and determining which sites show up in the
lists most frequently [13]. A review of methods to gen-
erate network topologies that have properties of real

networks is presented in [14)
1Cu LRSS 1D plooTliiltu 11l lJ.‘.tJ.
ML A aanatin alagnridbheon (VAN 2o U P S
111€ BelICLIC dIgOIILILIL (oA ) 1S allouller Upbllllléd,bl()ll
technique for approximating the global solution to a
complex problem space. It is based on “natural selec-
tion” of competing solutions and “genetic” encoding

of each of those solutions. A population of individu-
als, each defined by a set of chromosomes that repre-
sent a solution, is ranked according to the fitness of

the individual. Individuals are selected for reproduc-
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fitness. A “biased” roulette wheel based on the fit-
ness of the individual determines which individuals oc-

cur most frequently in the next generation. This is
repeated for several generations so that each genera-
tion tends to produce fitter solutions. GA was used
to expand existing computer networks while optimiz-
ing rehablhty
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topology on digita. cross-connect optimlzed with
GA in [18].

The rest of this paper is organized as follows: In
Section 2, we state the problem of optimally locating
switches in ATM networks. Then, we develop a de-
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m based on swappmg used ATN

for thnmzmg the 10cat10ns of ATM sw1tches We com-
pare the two versions of swap algorithms with genetic
algorithm for a prototype problem with fiber, traffic,
and switches in Section 5.

2 STATEMENT OF THE PROBLEM

The problem is to minimize the cost of a network
given certain constraints on quality of service (QoS)
parameters for different classes of traffic flows. The

algorithm must input and consider the geographic lo-
cations of traffic sources, the expected traffic flows be-

tween these sources, the existing fiber plant, and the
cost and capacity of available switches. The proposed
algorithm will route the traffic, specify the location of
the switches, select the types of ATM switches from a
given list, specify the number of fibers required from
the existing fiber plant for this network, and specify
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which is also nnmnnfnd

We make the followmg assumptions. Traffic sources
will be connected to the ATM switch that has the least
expensive path cost. Switch-to-switch traffic will be
routed with a shortest path algorithm. ATM switches
can be located only at a subset of given patch panel
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w111 be dlmensmned in terms of effectlve bandw1dth as
follows: the effective bandwidth of the switch-to-switch
links will be calculated by finding the minimum of the



flow model and Gaussian model. The effective band-
W1cl’ch of the source-to-switch traffic will be calculated

assigning them to the ports in decreasing order of ca-~
pacity. The capacity of all links will be symmetric.
Once the locations of switches are determined, the
largest capacity switch will be assigned at each node.
Then, a greedy heuristic algorithm will be applied at

I ot co 4 aexribnlh dhhnd ana
determine the least cost switch that can

I
to
QoS constraints

e LIS amtes.

Given the assumptions above the problem becomes
deciding which nodes will have switches. If there are N
number of nodes and S switches, then each node could
be in one of S + I states. It could either have no switch
or have one of the § types of switches. Therefore, there

are (S +1)" — 1 combinations that have at least one
switch. For a network with fifteen nodes and two types
of switches this is 14 348 906 possible combinations
that have at least one switch!

J"’r

We developed and implemented two swap algo-
rithms. The first is named SWAP1 w/K and the sec-
ond is SWAP2 w/K. Both swap algorithms use a clus-

P 1.
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tering algorithm to determine the candidate locations
for ATM switches. This algorithm creates lists of K

nearest neighbors for each node and determines the lo-
cations that appear in the lists most frequently |1

Then, nodes are assigned to the candidate switch lo-
cation that has the least expensive path cost. Finally,
the two swap algorithms attempt to lower the cost of
the network by swapplng used and unused switch lo-
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ba.ndw1dth node until the minimum number of nodes
that will support the traffic with the given switch lo-
cations is found.

3.1
1. Find candidate switch sites with a clustering algo-

rithm that as a parameter finds K nearest neigh-
bors for each node [13].

used s1tes, and ﬁnd routes usmg a shortest path
algorithm.

3. Assign switches at each used node in a greedy fash-
ion until the cheapest switch that supports the
traffic is found.

e
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the network topology cost. If cheaper
than the best, save it.
3. Swap a used and unused switch site randomly.

6. Go to step 2 until the maximum number of itera-
tions is reached.

7. Output the cheapest topology.

4 GENETIC ALGORITHM
v oalanariibha Lol o o Y AITONTTYTTAY
An algorithm which we named GENETIC was mod-
ified from [20] and implemented. In the chromosome a

“1” represents a candidate switch location and a “—1”
represents a node without a switch. Also, since the
code was designed for maximizing functions with posi-
tive values the fitness value was set to MAX _COST —
cost to minimize the cost.

1. Initialize the population with POPSIZFE random
members.
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4. Select members for the next generation by using
standard proportional selection. Find the cumu-
lative fitness of each member and spin a “biased”

roulette wheel.

5. Crossover two members

with  probability
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8. Use the elitist strategy.

9. Go to step 4 for the maximum number of genera-
tions, MAXGENS.

10. Output the cheapest topology.



OD | PCR | SCR | maxCTD | CLR
0,3 | 350K | 350K | 30 ms 107
04 | 350K | 350K | 30 ms 10-°
0,5 | 350K | 350K | 30 ms 10-5
0,7 | 360K | 350K | 30 ms 10-5
4,14 | 350K | 350K | 30 ms 10-5

and s shown in qure 1. The oifered traffic is shown
in Table 1. It is assumed that there are two types of
switches available. One switch costs $35,000 and has
four 622 Megabit per second (Mbps) ports. The sec-
ond switch costs $3,500 and has one 622 Mbps port
and four 155 Mbps ports.

L, QUAITADT .../~ QY XTA DY +:, /L and T T
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aloorithms were evaluated usine the nrototvne set of
AigoTILAMS WEre evaiuaiea UsSing iiae proioiype set of

fiber, traffic, and switches. The parameters were ad-
justed so that the number of times that common cal-
culations were done was equivalent in all algorithms.
All algorithms performed these steps 200 times. Each
algorithm was run with the same 10 seeds for the ran-

dom number generator. In the SWAP algorithms the
PRSP I DRI SRt BT IR [P R N U (PRI PRGN Gy
SECCU UELelll 1 1E0 LI 1OUES 411l LI1Ee ordaer ol 11odes o
ho corannad Tn the CARENEFETIC alenarithm tha cond Ao
e DVVMHF\JU ALl VALU A4 JiNAJ A 2/ QUIEWVLI1VU11111l vilv OuvLu Uy
termined the members of the initial population. The
SWAP1 w/K and SWAP2 w/K algorithms were run

with K equal to 5 and 7. The GENETIC algorithm
was run with POPSIZE = 20, MAXGENS = 10,
PXOVER =038, and PMUTATION = 0.15.

Comparison of Swap1 with 5 and 7 neighbors, Swap2 with 5
and 7 neighbors, and Genetic Algorithm
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The lowest cost network topology discovered is
$15 1K when ATM sw1tches are placed at nodes 3, 4

dlscovered a network topology near $15 1K four out of
ten times, but the other six out of ten times the topol-
ogy was near $41K. Note that all the best topologies
resultmg from the GENETIC algorlthrn are in the bins
Therefore, it gave more
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strates that the GENETIC algorithm has the potenti
to discover a lower cost network than the SWAP w/K
and SWAP2 w/K algorithms. This is due to the GE-
NETIC algorithm’s inherent step of generating several
initial random topologies when initializing the mem-
bers of the population.
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